Quantum codes via Hermitian self-orthogonal codes over \mathbb{F}_{4}

Lijun Zou
Supervisor: Dr. Ronan Egan
National University of Ireland, Galway

NUI Galway OÉ Gaillimh

Background

Definition (Coding theory basics)

Coding theory | $[n, k, d]_{q}$-linear code | Hamming distance | minimum distance | minimum weight | information rate | optimal | best known

Definition (Hermitian self-orthogonal code on \mathbb{F}_{4})

Let C be an $[n, k]_{4}$ code. The Hermitian dual of C is the code $C^{H}=\left\{x \in \mathbb{F}_{4}^{n}:\langle x, c\rangle=0 \forall c \in C\right\}$, where $\langle x, c\rangle$ is defined as

$$
\begin{equation*}
\langle x, y\rangle_{H}=\sum_{i=1}^{n} x_{i} y_{i}^{2} \tag{1}
\end{equation*}
$$

If $C \subseteq C^{H}$ we say that C is Hermitian self-orthogonal.
Remark. We will see on $\mathbb{F}_{4},(1)$ is closely related to the classical Hermitian inner product over complex numbers.

Background

Definition (Complex generalized weighing matrices)

An $n \times n$ matrix H of weight w with non-zero entries in the set $\left\langle\zeta_{k}\right\rangle$ is a complex generalized weighing matrix if

$$
H H^{*}=w I_{n}
$$

If $w=n$, then H is called a Butson Hadamard matrix.
Example $(\mathrm{BH}(6,3))$

$$
H=\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & z & z & z^{2} & z^{2} \\
1 & z & 1 & z^{2} & z^{2} & z \\
1 & z & z^{2} & 1 & z & z^{2} \\
1 & z^{2} & z^{2} & z & 1 & z \\
1 & z^{2} & z & z^{2} & z & 1
\end{array}\right) \Longrightarrow\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 2 & 2 \\
0 & 1 & 0 & 2 & 2 & 1 \\
0 & 1 & 2 & 0 & 1 & 2 \\
0 & 2 & 2 & 1 & 0 & 1 \\
0 & 2 & 1 & 2 & 1 & 0
\end{array}\right) .
$$

Main theorem

Theorem (Main theorem)

Given a Hermitian self-orthogonal $[n, k]_{4}$-code C such that no codeword in $\mathrm{C}^{\mathrm{H}} \backslash \mathrm{C}$ has weight less than d, one can construct a quantum [[n, $n-2 k, d]]$-code.

The Main theorem is based on the paper of A. Robert Calderbank et al.

Theorem (A.Robert Calderbank et al.[1])

Let C^{\perp} be the trace dual of code C and C^{H} be the Hermitian dual of C.

- Theorem 2. Suppose C is an additive self-orthogonal subcode over \mathbb{F}_{4}, containing 2^{n-k} vectors, such that there are no vectors of weight $<d$ in $C^{\perp} \backslash C$. Then any eigenspace $\phi^{-1}(C)$ is an additive quantum error-correcting code with parameters $[[n, k, d]]$.
- Theorem 3.

$$
C \subseteq C^{\perp} \Longleftrightarrow C \subseteq C^{H} .
$$

Construct Hermitian self-orthogonal code over \mathbb{F}_{4}

We first need to connect matrices in $\operatorname{CGW}(n, w ; 3)$ to generator matrices of codes over \mathbb{F}_{4}. Define the map $\phi:\{0\} \cup\left\langle\zeta_{3}\right\rangle \rightarrow \mathbb{F}_{4}$ such that

$$
\begin{aligned}
\phi(0) & =0 \\
\phi(1) & =1 \\
\phi(z) & =x \\
\phi\left(z^{2}\right) & =x^{2} .
\end{aligned}
$$

Example ($\mathrm{BH}(6,3)$)

$$
H=\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & z & z & z^{2} & z^{2} \\
1 & z & 1 & z^{2} & z^{2} & z \\
1 & z & z^{2} & 1 & z & z^{2} \\
1 & z^{2} & z^{2} & z & 1 & z \\
1 & z^{2} & z & z^{2} & z & 1
\end{array}\right) \Longrightarrow \phi(H)=\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & x & x & x^{2} & x^{2} \\
1 & x & 1 & x^{2} & x^{2} & x \\
1 & x & x^{2} & 1 & x & x^{2} \\
1 & x^{2} & x^{2} & x & 1 & x \\
1 & x^{2} & x & x^{2} & x & 1
\end{array}\right)
$$

Construct Hermitian self-orthogonal code over \mathbb{F}_{4}

Proposition

If H is an element of CGW $(n, w ; 3)$, then the rows of $\phi(H)$ are pairwise orthogonal with respect to the Hermitian inner product.

Proof.
We can show that for $x, y \in\{0\} \cup\left\langle\zeta_{3}\right\rangle$,

$$
\phi(x y)=\phi(x) \phi(y)
$$

and for rows H_{i} and H_{j} of H,

$$
\left\langle H_{i}, H_{j}\right\rangle=0 \Longrightarrow\left\langle\phi\left(H_{i}\right), \phi\left(H_{j}\right)\right\rangle=0 .
$$

Remark. $\phi(x+y) \neq \phi(x)+\phi(y)$.

Construct Hermitian self-orthogonal code over \mathbb{F}_{4}

It follows that if the rows of $\phi(H)$ are also orthogonal to themselves, then the rows of $\phi(H)$ will generate a Hermitian self-orthogonal code.

Proposition (Paper of D. Crnkovic, R. Egan, A. Svob [2])

If H is a CGW $(n, w ; 3)$ matrix, where w is even, then $\phi(H)$ generates a Hermitian self-orthogonal linear code over \mathbb{F}_{4}.

Remark. Any subset of $\phi(H)$ also generate a Hermitian self-orthogonal code.

Why do we choose CGW $(n, w ; 3)$ matrix?

Proposition

If $w>1$ is even, and C is the code generated by $\phi(H)$, then the minimum distance of C will be at least 4 .

Determine the parameters of quantum code - GAP code

```
LoadPackage("guava");
G := One(GF (4)) * [[Z (2) ^0, Z (2) ^0],
```



```
[Z(2)^0, Z (2^2), Z (2^2)^2, Z (2)^0, Z (2^2), Z (2^2)^2],
[Z(2)^0, Z (2~2)^2, Z (2~2)^2, Z (2~2), Z (2)^0, Z (2^2)],
[Z(2)^0, Z (2^2)^2, Z (2^2), Z (2^2)^2, Z (2^2), Z (2)^0]];
#Write a function takes a matrix as input and outputs the parameters of the quantum code.
MyQuantumD := function(G)
local IndList, i, D, j, C, C_H, CHH, CH;
IndList := MyLinearVector(G);
for i in [1 .. Length(IndList)] do
    D := Combinations(IndList, i);
    for j in D do
        C := GeneratorMatCode(j, GF (4));
        C_H := S_Mat (j); CHH := GeneratorMatCode(C_H, GF (4));
        CH := DualCode(CHH);
        Print(j,"\n"); Myresult(CH,C);
    od;
od; end;
#Write a function that computes the minimum weight of a code C over F_4.
F4_MinimumWeight := function(C)
    local list1, list2, list3, MW;
    list1 := WeightDistribution(C); list2 := ShallowCopy(list1);
    Remove(list2,1);
    MW := PositionNonZero(list2);
    return MW; end;
```


Determine the parameters of quantum code

Proposition

Let C be a code over \mathbb{F}_{4}, generated by a matrix M. Let N be the matrix obtained from M by replacing each entry with its conjugate. The Dual of N is equal to the Hermitian Dual of M.

Proof.

Let $x \in C$. Let M_{i} be a row of M and $N_{i}:=\overline{M_{i}}$ be a row of N. Then

$$
\left\langle x, M_{i}\right\rangle_{H}=0 \Longleftrightarrow \sum_{j=1}^{n} x_{j} \overline{M_{i j}}=\sum_{j=1}^{n} x_{j} N_{i j}=0 \Longleftrightarrow\left\langle x, N_{i}\right\rangle=0 .
$$

Results- $\mathrm{BH}(6,3)$

Table: Buston Hadamard matrix of order 6, BH $(6,3)$

Generators	Parameters of quantum code	Optimal?
(111111)	$[6,4,2]$	Yes
$\left(11 \times x x^{2} x^{2}\right)$	$[6,4,2]$	Yes
$\left(1 \times 1 x^{2} x^{2} \times\right)$	$[6,4,2]$	Yes
$(111111),\left(11 \times x x^{2} x^{2}\right)$	$[6,2,2]$	Yes
$(111111),\left(1 \times 1 x^{2} x^{2} \times\right)$	$[6,2,2]$	Yes
$\left(11 \times \times x^{2} x^{2}\right),\left(1 \times 1 x^{2} x^{2} \times\right)$	$[6,2,2]$	Yes

Results- all Buston matrices up to order 18

Lemma

- $\mathrm{BH}(n, 3)$ is non-empty only if n is a multiple of 3 .
- There are one matrix of $\mathrm{BH}(6,3)$, two matrices of $\mathrm{BH}(12,3)$ and 85 matrices $\mathrm{BH}(18,3)$ of order 18 up to monomial equivalence[4].
- The weight distribution of the trace dual of C is determined by the weight distribution of C [1].

Results. (compared with [3])

$$
[6,4,2] \quad[6,2,2]
$$

$[12,2,4] \quad[12,4,4] \quad[12,10,2]$
$[18,16,2] \quad[18,14,2] \quad[18,12,2] \quad[18,10,3] \quad[18,8,4] \quad[18,4,5] \quad[18,2,6]$

Construct CGW(n,w;3) matrices

Proposition

Let $H \in \operatorname{CGW}(n, w ; k)$ and $K \in \operatorname{CGW}(m, v ; \ell)$. Then $H \otimes K \in \operatorname{CGW}(m n, w v ; \operatorname{lcm}(k, \ell))$, where $\operatorname{lcm}(k, \ell)$ denotes the least common multiple of k and ℓ.

We use $\mathrm{BH}(n, 3)$ matrices up to order 18 and the following type of matrices to construct new CGW(n, w;3) matrices.

$$
\operatorname{CGW}(5,4 ; 3) \quad \operatorname{CGW}(21,16 ; 3) \quad \mathrm{BH}(3,3) \quad \mathrm{BH}(9,3)
$$

Results

$$
[5,1,3] \quad[5,3,1] \quad[21,15,3] \quad[21,19,1]
$$

$[15,13,1] \quad[15,11,2] \quad[15,7,3] \quad[25,23,1] \quad[25,17,3]$
$[30,26,1] \quad[30,24,2] \quad[60,56,2] \quad[60,54,2]$
[90, 86, 2] [90, 84, 2] [90, 82, 2]
[63,61, 1] [63,57,2] [105, 103, 1]
[126, 120, 2] [126, 118, 2] [252, 246, 2] [252, 244, 2]
$[36,34,2] \quad[36,32,2] \quad[36,30,2] \quad[36,26,3] \quad[36,24,4] \quad[36,22,4]$
$[54,52,2] \quad[54,50,2] \quad[54,48,2] \quad[54,44,3] \quad[54,40,4]$

Reference

[1] A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane. Quantum error correction via codes over GF(4). IEEE Trans. Inform. Theory, 44(4):1369-1387, 1998.
[2] D. Crnković, R. Egan, and A. Švob. Constructing self-orthogonal and Hermitian self-orthogonal codes via weighing matrices and orbit matrices. Finite Fields Appl., 55:64-77, 2019.
[3] M. Grassl. Bounds on the minimum distance of linear codes and quantum codes. http://www. codetables.de. Retrieved 23/6/2021.
[4] M. Harada, C. Lam, A. Munemasa, and V. D. Tonchev. Classification of generalized Hadamard matrices $H(6,3)$ and quaternary Hermitian self-dual codes of length 18. Electron. J. Combin., 17(1):Research Paper 171, 14, 2010.

